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» Common neighl?ors and it.s weighted variants.(Adamic/Adar), oreferential attachment, » We prove weak consistency result on CN-VEC when average degreee grows faster than n'/ (C) MMSE (d) RDPG
resource allocation, Katz index, PageRank, SimRank, and graph neural networks, etc. _
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» Our method constructs a similarity measure that provably works in sparser settings. SVD-RBE Real-world Network Results
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» Typically lack provable guarantees, but often work well in practice. > X< S Ky (viv) where Ky (vy,Va) = exp 202 = 0.2 = 0.2 =
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